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Abstract

We build a model of time starting from the primitive concept of base-set B ={o;{i €/} of

all physical systems, whose elements are called pre-particles ;. We assume that B isa
denumerably infinite set. Particles or bodies are represented by the subsets of the power
set #(B) of the base-set B. A physical system is represented by a set of particles. We
introduce the distinction between evolving and non-evolving particles, and assume that
the former are represented by those subsets of #(B) which are chains. Making use of the
above concepts we define the state of a particle and the indicator of the state of a particle
with respect to a given state of the same or another particle. Then we define in terms of
indicators the concepts of instant, time-set, degenerate time-set, event, and clock. For

the time related to a given clock one has a set in which the order relation is in general not
connected. Some tHeorems are proved.

L. Introduction

There are several fundamental theories of time. Among them we can
mention the theory of Noll and Bunge (Noll, 1967; Bunge, 1967, 1968,
1970}, and the theory of Basri (1966). The first starts from the primitive
concept of an event and a function that pairs couples of events to real numbers
This function produces a partition into equivalence classes of the set of events
and orders the corresponding quotient set. Each of these equivalence classes
is defined as an instant. In the paper of Noll (1967) a theory of universal time
(classical) is developed. Bunge (1967. 1968, 1970) improves the theory by
introducing new concepts, among others, that of reference frame, allowing
the definition of local time, which fits in with the relativistic schema.

More recently, Bunge (1974) has developed a theory of time starting from
the primitive concepts of a thing and of the property of a thing. Then, the
concept of state space of a given thing is defined in terms of the primitive
concept of property. The state space for several non-interacting things is given
by the cartesian product of the individual state spaces. Some of the states
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belonging to a given state space can be ordered by general laws. Given a state
space, the concepts of event and instant are defined in the subspace of ordered
states as ordered pairs of states, and equivalence classes of states, respectively.
One of the properties in this theory is that the disappearance of things entails
the non-existence of time.

Basri’s theory starts from the primitive concepts of observer, sensations,
subjective entities, objective entities, appearance and disappearance events,
and other primitive concepts (Basri, 1966). Fixing some parameters this theory
yields a model which has some of the properties of general relativity.

In the present paper we develop a model of time starting from the
primitive concept of base-set B of all physical systems. B= {o;]i€[}. isa
denumerably infinite set of what we call pre-particles «;. The concept of pre-
particle is a primitive one, and for the sake of intuition we will say that a
pre-particle is a physical object which can be described only from the outside,
i.e., there is not a description of its internal properties.

Let us consider the power set #(B) of the set B, i.e., the set whose elements
are all the subsets of B, given by (B) = {a(x) |x € R C R}, where R is the set
of the real numbers. Because B can be either finite or denumerably infinite,

P(B) will be either finite or infinite with the power of the continuum,
respectively (Fraenkel, 1958). A particle or body is represented by any subset

0
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Figure 1.— A picture of an evolving particle (left) and of a non-evolving particle (right).
In order to have an infinitely denumerable base-set B of pre-particles, let us consider only
the rational points of each coordinate axis. Then, each point whose coordinates are
rational numbers represents a pre-particle. In the above convention, ¢, represents an
evolving particle whose elements are the ovals which cover each other. On the other hand,
Cpe represents a non-evolving particle because some of its elements are not ordered by
the proper inclusion relation C.
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of #(B) — 0, where  is the empty set, and we define a physical system as a
set of particies. According to the above definitions there are particles which
are represented by sets of only one set which in turn contains only one pre-
particle.

Consider the physical system C 2(B) whole elements are the subsets of
P(B) which are chains (Fraenkel & Bar-Hillel, 1958). A chain is a set
{d(x)]x € X} ordered by the relation C of proper inclusion, such that for
any x,x' € X one has either d(x) C d(x") or d(x") C d(x). As is well known
the relation C can be defined in terms only of the membership relation €,
and, in general, any order relation can be defined in terms of the member-
ship relation (Fraenkel & Bar-Hillel, 1958). This implies that in our model
the basic relation is that of membership.

We distinguish between two types of particles: if ¢ € C #(B) we
say that ¢ represents an evolving particle, and if ¢ € C#(B) then ¢
represents a non-evolving one (Fig. 1). To give an example, let us suppose
that the base-set of pre-particles is finite and given by B = {x, &y }. Then,
PBY= {0, {oq}, {oa}, {ay, a5} }, and the particles are represented by the
following subsets of the set (B} — 0: ¢, = {{a}} €= ={{ay)hes={{o, aq)
ca= oy}, fag, @)} cs = {{an), {ay, ap}, and ¢ = flay}, faah, oy, aal).
A physical system will be represented by a set of ¢;’s. € Z2(B) consists of
{1, €2, €3, €4, Cs}; and ¢g TEpresents a non-evolving particle, (From now on,
we will speak about the ¢’s as particles; but it is understood that the ¢’s are
representations of particles, in the sense that the ¢’s are sets, i.e., concepts,
whereas the particles are things (Bunge, 1974)).

Given a particle ¢; = {z'(x)| x € X C R}, where by definition ¢’(x) € P(B),
we call each a'(x) an element of ¢;. Further, we call a state of ¢; any set

sy =dx)y - U dE)
x'eX'(x)

where the a'(x") with x' € X"(x) are all the elements of ¢; such that a’(x) #
4 (x"y and &'(x) ¢ '(x"). Therefore, if all the elements of ¢; are disjoint, each
a'(x)is in turn a state of ¢;. On the other hand, if ¢; is an evolving particle
with more than one element, some states of ¢; can be different from any
&(x} (Fig. 2). In the above example, ¢, has the state {a;}, ¢, the state {a,},
c3 the state {ay, 1. ¢4 the states {o;} and {o, @z} — {o} = {ay}, ¢5 the
states {ap} and {ay, oy} ~ {&y} = {04}, and ¢4 has the states {o}, {®p} and
{og, o} — {aq, o} = ¢. We see that different particles can have the same
states, but they differ in the order of the states. This order is characterized by
the following definition. The states of an evolving particle can be ordered in
the following way: If ¢,,, = {a™(x)|x € X C R} is an evolving particle, then
two states

() = &7 (x) M) and $M0)="0) - ()

( ) y eX 0)

where x, ¥y € X, are such that s”(x) < s7(y) iff a™(x) C a™(y). For
a non-evolving particle the order thus induced in the set of states of a particle,
will not be connected. In the above example, the states of ¢4 are such that
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{o,} < {0y}, and for the states of ¢5 we have {a,} < {oy}. On the other hand,
for ¢ we have neither {o,} < {a,} nor {as} < {o,}.
We give now an intuitive representation of some of the above concepts. A
pre-particle can be visualized as a physical object which has no parts and
does not change. For a particle ¢; = {¢*(x) |x € X C R}, the cardinal of the set
KEJXai(x) gives a measure of the spatial region which ¢; sweeps in its move-
X

ment. An evolving particle occupies at different stages of its evolution a spatial
region whose measure is given by the cardinal of the corresponding state.

Sy S, S, S Sx
ot
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Figure 2.—States of an evolving particle. The elements of care a; = 51, a2 =57 U s3,
a3=s1U s Us3,a4=51WUsUszUsgandas=5;U s, Uy U gy Uss. The states of ¢ are
given by sy, 52, §3, 4 and s5. The elements of ¢ are ordered by the relation C as
ay < ay < az< a4 <as. According to the rule given in the text, the states of ¢ are
ordered as 51 < 53 <53 <354 <55s.

It is important to point out that the introduction of the notion of an
evolving particle does not imply the surreptitious introduction of the notion
of time. What we are introducing here is something related to the concept
of change, which is different from time (for a discussion of the difference
between change and time see for instance Bunge (1968)). But one may then
wonder if we are in fact working with absolute movement, However, because
the measurement of the rate of a movement requires clocks and reference
frames and, as we will see, in our model measurement of time intervals with a
given clock produces a partition of the set of instants that depends on the
clock, this model provides a flexible formalism for the measurement of time
intervals. At any rate, in the present stage of the model we say nothing about
separations in space between particles, and between different states of a particle.
Thus, strictly speaking, we cannot describe either movements or reference
frames consisting in more than one clock.
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2. The Model

In what follows we make implicit use of the postulates of the Zermelo-
Fraenkel version of set theory (Fraenkel & Bar-Hillel, 1958).

Postulate 1. There exists a denumerably infinite set B = {a; |7 € I'} which
we call the base-set of pre-particles g;.

Postulate 2. Any subset of the power set #(B) of B represents a particle of
the physical world.

pleicix)

Figure 3.~Indicator of a state. The two sets of hatched ovals represent the paricles ¢; and
¢j. ¢; is an evolving particle and ¢jisa non-evolving one. shis a state of ¢j and in this
particular case is also an element of the same particle. s{c is also the firstelement and the
first state of the indicator p(c;¢; |x). s is a state of the particle ¢; and is also the last

state of the indicator p(¢;cj| x). The last element of p(c;cylx) is splU s Us3UsU S50 57

Postulate 3. There exist two types of particles in the physical world, namely,
the evolving particles, which are represented by those subsets of #(B) that are
chains, and the non-evolving particles, represented by those subsets of #(B)
that are not chains.

Definition 1. We call an indicator of a state si(x) of ¢j with respect to the
state s'(y) of ¢;, any evolving particle with a first and a last state which are
equal to s/ (x) and §'(x), respectively (Fig. 3).

According to this definition an evolving particle ¢; with a first and a last
state which are denoted by s, and s,, respectively, is an indicator of the
state §; of ¢; with respect to the state 5, of the same particle ¢;. Also, for an
evolving particle ¢; whose first and last states are s; and s, respectively, and
for a particle ¢; with one of its states equal to s, it follows then that ¢; is an
indicator of the state s, of ¢; with respect to the state s, of ¢;. The case of
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an indicator of a state of a given particle with respect to a state of another
particle, is illustrated in the Fig. 3.

Theorem 1. For any state s'(x) of a given ¢;, there exists exactly one
indicator p(c;c;| zo) of the state 5'(x) of ¢; with respect to the same state
s'(x) of ¢;, and p(c;c;| zo) has only one element which is equal to its first and
last element.

Proof. First of all it is important to realize that an evolving particle ¢; with
more than one element necessarily has more than one state. Let a/(x,) be the
first element of ¢;. Then, a’(x,) is also the first state of ¢;, because this state
must be such that

S =dxo)~ U &)
X'EX"(x,)
with a/(x") € ¢;, a/(x") # &/ (x o) and @’ (x ) ¢ a’(x"); however a/(x) is such that
for any a’(x") € ¢; one has a’(x¢) C a’(x"), ie.

U dEh=0
X' EX (x)
On the other hand, if more than one element belongs to ¢; one has d/(xg) C
a(x"), ie.
Say=dEY - U dE"
x"ex"(x"y

and &/(x¢) C Ua/(x") and Ud(x") C a/(x"), for any a/(x") € ¢; different from
@’ (xq). Therefore, s/(x") # a’ (x o) = s'(x o). Now, according to the hypothesis,
the indicator p(c;c;) zg) must be such that its first state be equal to its last one,
and thus p{c;¢;| zo) must have only one state which is s(xy). Therefore, taking
into account the above argument, only one element which is equal to the
first and last state of pc;c;1 o), belongs to p(c;c;| o), and thus p(c;e; | zg),
is unique.

In general, there is more than one indicator between two given particles.
We will use the notation P(c;¢;) for the set to which all the indicators of the
states of ¢; with respect to the states of ¢; belong, and the notation p(c;¢;|x)
for the indicators belonging to P(c;cy), i.e. P(c;¢;) = {p(cicilz)|z€ Z C R},
where z is an index which distinguishes the elements of P(c;c;). On the other
hand, given a physical system § we use the notation PS(c;¢;) for the set
SN Pe;ey).

Definition 2. Given a physical system S and a particle ¢; C #(B), an instant
of § with respect to ¢; is defined as the set 7(c;; S) = {p(cicjl z)Ij €J,
provided that p(c;c;| zj) € PS(c;c;j), and that the last state s'(x;) of p(c;cj| z;)
be the same state of ¢; for all j € J, and that to the intersection PS(c;cj) N
t{e;; S) there belong no more than one indicator for every j € J}.

Definition 3. We define the set T(c;; S) containing all the #(c;; S) as the
time-set of § with respect to ¢;.
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Definition 4. An event of ¢; with respect to S is a set e(¢;; S) =
{plcjc;lz)1j € J, provided that p(c;c;|z;) € PS(c;¢;), and that the first state
of plcje; {z]-) be the same state of ¢; for all j € J, and that to the intersection
PS(cjc;) N e(c;; S) there belong no more than one indicator for every j € J}.

To support the distinction above introduced between instant and event let
us make the following intuitive representation: an indicator p(c;c; | x) corre-
ponds to a signal going from ¢; to ¢;. Then, an instant #(c;; §) may be inter-
preted as the set of all the signals which are evolving particles belonging to S,
and with a first and a last element, coming from the particles belonging to §
and arriving at the same state of ¢;. In the same way, an event e(c;; S) will be
the set of all the signals which are evolving particles belonging to §, and with
a first and a last element, coming from the same state of ¢; which reach the
particles belonging to S.

Theorem 2. Given S and ¢; C #(B), for all p € PS(c;cy), where ¢, € S,
there is at least one instant 1 € 7(c;; S) such that p € .

Proof. Consider p(c;ci | z) € PS(c;cy), where ¢ € S. Because p(c;cxl zx)
is an indicator it follows that p(c; ¢y | zx) is an evolving particle with a first and
a last element, and hence with a first and a last state, which we denote by s,
and s,, respectively. On the other hand, there exists a state of ¢; identical to
5,. Therefore, p(c;cx | z)) fulfils all the conditions for belonging to an instant
of T{c;; S), and thus there exists at least one #(¢;; S) such that
pleierlzi) € t(cii S).

Theorem 3.1,t € T(c;;S)and t #¢ =t ¢ and ' ¢ 1.

Proof. Let us suppose t C t',i.e. t'— t # 0, and let p(cicx|zx) €1 — ¢
From Definition 2 one has that all the last states of each p(c;¢;|z;) € ¢’ are
equal between them, and equal to a given state of ¢;, which we may call s,.
Moreover, because ¢ C ¢, all elements of ¢ also belong to ¢” and thus fulfil the
same above condition, i.e. the last state of each indicator belongs 7 is 5.
Therefore p(c;cx | zy) € t, which contradicts p(c;cilz) €1 — 1.

Corollary 1.1, € T(c;;S)and t #¢'= Nt Crandt N C 1.

Definition 5. A time-set T(c;; S) is degenerate iff for any t € T(c;; ) to
which there belongs an indicator of each non-empty PS(c;cy),
where ¢ € Sp € S one has that for all sets 7’s of indicators defined such that
an indicator of each non-empty PS(c;c;), where ¢ € S, belongs to 7, then 7
also belongs to T{c;; S).

Theorem 4. Consider a physical system S and a particle ¢;C #(B) such
that : (i) T(c;; S) is a degenerate time set; (ii) for all the ¢; € S one has that
PS(c;c)) is either finite with at least two elements, or denumerably infinite;
(iii) at least one instant which belongs to T'{(c;; §) is a denumerably infinite set
of indicators. Then, the conditions (i), (ii) and (iii) imply that there exists a
set Toley; 8) € T(e;; S) such that each of its elements is an infinite denumerable
set of indicators, and that the cardinal of To(c;; S) is larger than the cardinal
of any PS(c;cy), where ¢ € S, namely, To(c;;.S) has the power of the continuum
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Proof. From (iii) in Theorem 4, there exists at least one infinite denumer-
able set 7, of indicators such that t; € T(c;; S). Let us write £, as {p(c;¢j | x),
pleickly), pleialz), . . . pleici [v), plejesIw), . . .}. Because T'(c;; S) is a
degenerate time-set we have that the instant ¢, obtained from ¢, by making
the substitution of p(c;c; | x) € 1, by p(c;c;] x") € PS(c;¢j) with x" # x, also
belongs to T{(c;; S). The existence of p(c;c;|x") is guaranteed by the
condition (ii) in the above theorem. By repeating the same procedure on
¢, and so on, one establishes the following one-to-one correspondence:

1+ Iy = {p(cicf lX), p(cickly)s p(CiCIIZ), s p(cicsl U): p(cict I W), .. }
2o 15 = {p(eicil x), pleiexly), pleicy| 2), - . ., pleieg|v), pleics W), - . .}
3o t3= {pleici|x), pleserl ¥, pleier] 2), - - o pleieslv), pleice Iw), . . .}

m <ty = {p(cic]' IX,), p(cicklyy)5 p((,‘,‘C‘liZ’), T} p(cicslvy)’ p(c,-ctlw), ‘e }

Let A be the set of all the above instants, i.e. 4 = {#;]i € N} where V is the
set of natural numbers. Consider now the set T(c;; S) to which belong all the
elements of T{c;; §) which are denumerably infinite sets of indicators. Then,
by definition, one has Ty(c;; S) & T(c;; S) and also Ty(c;; S) # @ because
A # 0. In order to see that 4 is a proper subset of Ty(c;; S) it is sufficient to
recognize that ¢; € 4 = t; € To(c;; S) and that the set of indicatorsd ={p;, p,,
-+ Pmpo - - -} constructed following Cantor’s diagonal method (i.e. the elements
of d are such that py # p(c;c;|x), p2 # plcice|y)s - - o Pm F P(cice W), .. ) is
such that d € Ty(c;; S) and d & A4 (see, e.g. Fraenkel, 1958). In the same way,
it can be seen that any denumerably infinite set 4 of instants which are de-
numerably infinite set of indicators is a proper subset of Ty(c;; S), i.e.

A C Tylc;; S). Then, Ty(c;; S) is a non-denumerably infinite set. Moreover,
because PS(c;c,y) is either finite or denumerably infinite for all ¢,,, € S, one has
that the cardinal of T(c;; S) is larger than the cardinal of PS(c;c,,) for all

cm €S

In order to see that Ty(c;; S) has the cardinal A} of the set of the real
numbers, let Ty, be the set To(c;; ) when all the PS(c; ¢, ) contain only two
indicators, and Tg be the set Tp(c;; §) when all the PS(c;c,,) are denumerably
infinite sets. Then we have A (T,) < A (To(c;; S)) < N (Tog), where A (T)
stands for the cardinal of the set 7. On the other hand, the cardinal of Ty,
is A, because each element of T, can be written in the form of a continuous
fraction in binary system by assigning numbers 0 and 1 to the two indicators
belonging to PS(c;c,,). This establishes a one-to-one correspondence between
the real numbers in the interval [0, 1) and the elements of T, . Moreover, the
cardinal of Tgg is N = N7, where A stands for the cardinal of a de-
numerably infinite set. Therefore, #; < N (To(c;; S)) < A7, ie.

N (Tolei; S) =Ny

Let us now consider a time-set T(¢;; S), an evolving particle ¢; €5, and the
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set Z(c;c;; ) such that Z(c;¢;; ) € T'(c;; S) and 7, € Z(c;¢;; S) implies that
there does not exist a p € PS(c;¢;) such that p € £,,.. Then, we introduce the
equivalence relation C (¢;¢j; S) defined on T(c;; S) — Z(c;¢j; §), according to
which ¢, C (¢;cj; )ty iff there exists a p € PS(c;c;) such that p € £, N 1.

Definition 6. A clock of a physical system § is a physical system formed by
PS(c;cj), where ¢;, ¢; € S, and ¢ is an evolving particle, and with the property
represented by the operator Q(c;¢;; S) such that: (i) Q(c;¢;5 S) by acting on
T(c;; 8) produces a set T(c;¢;; S) for which 7, € 1(c;c;;8) © 1, € Wlcyey;S), and
Wlciej; S) = (Tleis 8) — Z(cieys $)) C (ei¢55.8) and (i) T'(c;¢p; S) is an ordered
set such that for t5, 7, € T(c;¢;; S) one has 5 < £, iff s7(x) < sp(x"), where
sp(x) and s(x") are the first states of p(c;¢; |x) and p(c;c;|x"), respectively,
and p(c;¢;1x) € 157 PS(c;c;) and p(c;c; Ix)et, N PS(e; ¢;), with 17 € 15 and
teEte.

Concerning the condition (ii) of the above definition, let us recall that if
sp(x) and s7(x") are the first states of p(c;¢;|x) and p(c;c;|x"), respectively,
then there exist two states of ¢; which are precisely these two states. Moreover,
because ¢; is an evolving particle we must have either s¢(x) < sp(x") or s¢(x") <
se(x).

Definition 7. Given a physical system .S and two events e = e(cy,,; S) and
e’ =e(e,; S) with ¢y, ¢, € 8, the time-setdnterval between these events with
respect to a clock Q(c;¢y;.8) is the subset T1(c;cj; 85 ee”) of Q{c;cz; HT(cy; ),
which has first and last element, let them be #5 and 7, respectively, and there
exist two indicators p(c; ¢, | ) and ple;c, | ¥) such that p(cic,, | x) €
taNe(c,,; S) and ple;c, | 3) € te N eley; S), where 1y € 15 and £, € £, and for
allt, < t5 and 1,,> t, one has for every ¢, € ¢, and 11 € t,, that £, Ne(cn; ) =
trN e(cy; S) = §. Moreover, we define the time interval between e(c,,; S) and
e(cp; S) with respect to the clock Q(c;c;; S) and to a given measure M, as the
measure Aof the set T(c;c;; S; ge') —{t.}. If we use cardinality as a measure,
the corresponding time interval will be given by the cardinality of the set
Neiey; S;e€) — {1}

According to the above definition, given a physical system §, two events
e(cm; S) and e(c,; S), where ¢,y,, ¢, €5, and a clock Q{c;¢;;.S), the time-set-
interval between e(c,,: S) and e(c,; S) with respect to £(c;c;; ) might not
exist, since a time-set-interval must have a first and a last element, which is
not always the case for infinite sets. However, all the finite time-set-intervals
are trivial cases of doubly-well-ordered sets, which not only have first and last
elements but each subset of it has a first and a last element. It may also occur
that for two events e(c,,;S) and e(c,,; ), the physical system S concerned be
such that for one or two of the events there does not exist a 5 € £2(¢;¢;;.5) x
T(c;; S) for which there exists at least one ¢4 € 75 fulfilling 75 Nelcy; S) # 9,
where k is equal to m or n. In such a case we will say that the events e(cy,;.5)
and e{c,; S) are disconnected with respect to the clock associated with
Q(Ci Ci5 S)

Given a time-set T'(c;; 5), a clock associated with Q(c;¢;; §) and two events
e{cy,,; ) and e(cy; ), one may interpret the measurement of the time interval
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between e(c,,,; S) and e(cy; S) with respect to £(¢;c;; S) and to the measure m
(e.g. the cardinality), as an operation which first may erase some elements

of T(c;; S) yielding T(c;; S) — Z(c;¢;; S) and produces a partition of

T(c;; S) — Z(cicj; S), then orders the resulting quotient set, and finally counts
the equivalence classes of instants comprised between the two equivalence
classes of instants related in the way expressed in Definition 6 to e(c,,;S)
and e(c,; S), respectively. Therefore, the measurement of time intervals
depends in a nontrivial way on the clock with respect to which the time
interval is defined and on the physical system considered. This provides a
very flexible schema for the measurement of time intervals.

3. Concluding Remarks

(i) We have developed here a relational theory of time, in the sense that
the disappearance of the basic physical constituents of our world would entail
the disappearance of time. But time and its relatives on the one hand, and
particles on the other hand, are on the same footing since both are based on
the base-set of all physical systems, which is formed only by pre-particles.

(ii) Though we have adopted a model of the physical world with an infinite
(although denumerable) number of pre-particles, which yields a set of particles
with the power of the continuum, one can cover the case of a physical world
with a finite number of particles by simply assuming that the base-set B of
pre-particles is finite. In this case (B) and thus the set of all possible particles
will be finite. On the other hand, (B) becomes a finite set in which C is not
connected, and thus can be represented by a graph. The same applies to any
particle.
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