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Abstract  

We build a model of time starting from the primitive concept of base-set B ~{aiti ~ I} of 
all physical systems, whose elements are called pre-particles a i. We assume that B is a 
denumerably infinite set. Particles or bodies are represented by the subsets of the power 
set ~(B) of the base-set B. A physical system is represented by a set of particles. We 
introduce the distinction between evolving and non-evolving particles, and assume that 
the former are represented by those subsets of ~(B) which are chains. Making use of the 
above concepts we define the state of a particle and the indicator of the state of a particle 
with respect to a given state of the same or another particle. Then we define in terms of 
indicators the concepts of instant, time-set, degenerate time-set, event, and clock. For 
the time related to a given clock one has a set in which the order relation is in general not 
connected. Some theorems are proved. 

1. Introduction 

There are several fundamental theories of  time. Among them we can 
mention the theory of  Noll and Bunge (Notl, 1967; Bunge, 1967, 1968, 
1970), and the theory of  Basri (1966). The first starts from the primitive 
concept of  an event and a function that pairs couples of  events to real numbers 
This function produces a partition into equivalence classes of  the set o f  events 
and orders the corresponding quot ient  set. Each of  these equivalence classes 
is defined as an instant. In the paper of  Noll (1967) a theory o f  universal time 
(classical) is developed. Bunge (1967. 1968, 1970) improves the theory by 
introducing new concepts, among others, that o f  reference frame, allowing 
the definition of  local time, which fits in with the relativistic schema. 

More recently, Bunge (1974) has developed a theory of  time starting from 
the primitive concepts of  a thing and of  the property of  a thing. Then, the 
concept of  state space of  a given thing is defined in terms of  the primitive 
concept o f  property. The state space for several non-interacting things is given 
by the cartesian product of  the individual state spaces. Some of the states 
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belonging to a given state space can be ordered by general laws. Given a state 
space, the concepts of  event and instant are defined in the subspace of  ordered 
states as ordered pairs of  states, and equivalence classes of  states, respectively. 
One of  the properties in this theory is that the disappearance of  things entails 
the non-existence of  time. 

Basri's theory starts from the primitive concepts of  observer, sensations, 
subjective entities, objective entities, appearance and disappearance events, 
and other primitive concepts (Basri, 1966). Fixing some parameters this theory 
yields a model which has some of  the properties o f  general relativity. 

In the present paper we develop a model of  time starting from the 
primitive concept of  base-set B of  all physical systems. B - {o~ i I i @/).  is a 
denumerably infinite set of  what we call pre-particles o~ i. The concept of  pre- 
particle is a primitive one, and for the sake of  intuffion we will say that a 
pre-particle is a physical object which can be described only from the outside, 
i.e., there is not a description of  its internal properties. 

Let us consider the power s e t # (B)  of  the set B, i.e., the set whose elements 
are all the subsets of  B, given by ~(B) -=  {a (x) lx E_~ _C R ) ,  where R is the set 
of  the real numbers. Because B can be either finite or denumerably infinite, 
~ (B)  will be either finite or infinite with the power of  the continuum, 
respectively (Fraenkel, 1958). A particle or body  is represented by any subset 

0 
Ce 

One 

Figure 1 .-A picture of an evolving particle (left) and of a non-evolving particle (right). 
In order to have an infinitely denumerable base-set B of pre-particles, let us consider only 
the rational points of each coordinate axis. Then, each point whose coordinates are 
rational numbers represents a l~e-particle. In the above convention, Ce represents an 
evolving particle whose elements are the ovals which cover each other. On the other hand, 
Cne represents a non-evolving particle because some of its elements are not ordered by 
the proper inclusion relation c. 
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o f ~ ( B )  - 0, where 0 is the empty set, and we define a physical system as a 
set of  particles. According to the above definitions there are particles which 
are represented by sets of  only one set which in turn contains only one pre- 
particle. 

Consider the physical system C ~ ( B )  whole elements are the subsets o f  
~ (B)  which are chains (Fraenkel & Bar-Hiltel, 1958). A chain is a set 
( d ( x )  l x  E X }  ordered by the relation C of  proper inclusion, such that for 
any x, x '  C X one has either d(x)  C d (x ' )  or d(x ' )  C d(x) .  As is well known 
the relation C can be defined in terms only of  the membership relation ~, 
and, in general, any order relation can be defined in terms of  the member- 
ship relation (Fraenkel & Bar-Hillel, 1958). This implies that in our model 
the basic relation is that of  membership. 

We distinguish between two types of  particles: if c E C ~ ( B )  we 
say that c represents an evolving particle, and if e E C ~ ( B )  then c 
represents a non-evolving one (Fig. 1). To give an example, let us suppose 
that the base-set of  pre-particles is finite and given by B -- {o~1, a2). Then, 
~Y~(B)- {q), {eq}, {e@, {aa, a2} }, and the particles are represented by the 
following subsets of  the set~a(B) - 0: Cl = { { a l } } ,  c2  -~ {{0~ 2} }, c3  ~ {{C~l, 0~2}~ 
c 4 ~ {{0~1} , { O t l ,  0~2}), c s -~ {{c~2) , {0~1, c~2}}, and c 6 - -  { { a l }  , {a2}  , {C~l, a 2 }  }. 
A physical system will be represented by a set of  Ci'S. C ~ ( B )  consists of  
{cl, c2, c3, c4, Cs}; and c6 represents a non-evolving particle. (From now on, 
we will speak about the c's as particles; but it is understood that the c's are 
representations of  particles, in the sense that the c's are sets, i.e., concepts, 
whereas the particles are things (Bunge, 1974)). 

Given a particle c i =- {ai(x) l x  E X C_ R ), where by definition ai(x) ~ ~ ( B ) ,  
we call each # ( x )  an e lement  of ci. Further, we call a state of c i any set 

si(x) -~ ai(x) -- (_J ai(x') 
x '~X' (x)  

where the a!(x')  with x '  E X ' ( x )  are all the elements of  ci such that ai(x)  
ai.(x ') and d ( x )  ~ ai(x').  Therefore, if all the elements of  ci are disjoint, each 
at(x)  is in turn a state of  c i. On the other hand, if ci is an evolving particle 
with more than one element, some states of  ci can be different from any 
ai(x)  (Fig. 2). In the above example, c I has the state {cq}, c 2 the state {ce2}, 
c3 the state {al, a,}.  c4 the states {eq} and { a l ,  O~2} --  { a l }  = {0~2} , C 5 the 
states {a2} and {al, a2} - {a~} = {al}, and c6 has the states {al}, {a2} and 
{al, a2} - {al, a2) = qS. We see that different particles can have the same 
states, but they differ in the order of  the states. This order is characterized by 
the following definition. The states of  an evolving particle can be ordered in 
the following way: If  Cm =- {a m (x ) [ x ~ X C_ R }  is an evolving particle, then 
two states 

s m (x)  = a m (x)  - U a m (x')  and s m (3:) = a m (3:) - k.J a m (v ' )  
x '~X'(x)  y'~X'(y) 

where x,  y E X, are such that sin(x) < Sin(y)  iff am(x )  C am( y ) .  For 
a non-evolving particle the order thus induced in the set of  states of  a particle, 
will not be connected. In the above example, the states of  c4 are such that 
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{~1} < {~2}, and for the states o f c  s we have {~2} < {c~1}. On the other hand, 
for c6 we have neither {~1} < {e~2} nor {~2} < {cq}. 

We give now an intuitive representation of some of the above concepts. A 
pre-partide can be visualized as a physical object which has no parts and 
does not change. For a particle ci = {at(x)Ix E X C R}, the cardinal of the set 
x ~ X a i ( x )  gives a measure of the spatial region which ci sweeps in its move- 

ment. An evolving particle occupies at different stages of its evolution a spatial 
region whose measure is given by the cardinal of the corresponding state. 

S 1 S 2 

al 

a3 

~4 

s~ s4 ssI 

~5 

Figure 2.-States of an evolving particle. The elements of e are a I = sl, a2 =- Sl • s2, 
a 3 --= s 1 U s2 u x3, a4 --= gl  g g2 g g3 U g4 and a s ------ Sl u s 2 u s s u s4 u s 5. The states of c are 
given by sl, s2, s3, s4 and ss. The elements of c are ordered by the relation c as 
al .< a2 .< a3 < a4 < as. According to the rule given in the text, the states of c are 
ordered as sl < s2 <s3 Ks4 <ss. 

It is important to point  out that the introduction of the notion of an 
evolving particle does not imply the surreptitious introduction of the notion 
of time. What we are introducing here is something related to the concept 
of change, which is different from time (for a discussion of the difference 
between change and time see for instance Bunge (1968)). But one may then 
wonder if we are in fact working with absolute movement. However, because 
the measurement of the rate of a movement requires clocks and reference 
frames and, as we will see, in our model measurement of time intervals with a 
given clock produces a partition of the set of instants that depends on the 
clock, this model provides a flexible formalism for the measurement of time 
intervals. At any rate, in the present stage of the model we say nothing about 
separations in space between particles, and between different states of a particle 
Thus, strictly speaking, we cannot describe either movements or reference 
frames consisting in more than one clock. 
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2. The  M o d e l  

In what follows we make implicit use of the postulates of the Zermelo- 
Fraenkel version of set theory (Fraenkel & Bar-Hillel, 1958). 

Postu la te  1. There exists a denumerably infinite set B = {o~ i [ i E I} which 
we call the base-set of  pre-particles ~i. 

Pos tu la te  2. Any subset of the power set ~ ( B )  of B represents a particle of 
the physical world. 

@ 
Ci 

p(cicjlx) 

cj 

Figure 3.-Indicator of a state. The two sets of hatched ov.als represent the paricles c i and 
ci" ci is an evolving particle and cl is a non-evolving one..s/eis a state of cj and in this 
_particula'- case is also an element of thet same particle, syls., also the ftr st element and the 
first state of the indicator P(CiC i I x). s l is a state of the particle e i and is also the last 
state of the indicator p(cicl ! x). The last element of p(cic'l I x) is sfl u ~ s2 u s 3 u s4 • s5 u st t. 

Pos tu la te  3. There exist two types of particles in the physical world, namely, 
the evolving particles, which are represented by  those subsets o f ~ ( B )  that are 
chains, and the non-evolving particles, represented by those subsets o f g ( B )  
that are not chains. 

Defi .nit ion i .  We call an ind icator  of a state sJ(x) of cj with respect to the 
state s~(y).of ci, any. evolving particle with a first and a last state which are 
equal to sl(x) and st(x), respectively (Fig. 3). 

According to this definition an evolving particle ci with a first and a last 
state which are denoted by s 1 and s 2, respectively, is an indicator of  the 
state s I o f c  i with respect to the state s 2 of the same particle ci. Also, for an 
evolving particle c] whose first and last states are s1 and sz, respectively, and 
for a particle c i with one of its states equal to s2, it follows then that el is an 
indicator of the state s 1 of c i with respect to the state s2 of ci. The case of 
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an indicator of  a state of  a given particle with respect to a state of  another 
particle, is illustrated in the Fig. 3. 

Theorem 1. For any state fl(x), of  a given ci, there exists exactly one 
indicator p(cieilzo) of  the state fl(x) of  ci with respect to the same state 
fl(x) of  ci, and p(cicilZo) has only one element which is equal to its first and 
last element. 

Proof. First o f  all it is important to realize that an evolving particle ej with 
more than one element necessarily has more than one state. Let al(xo) be the 
first element of  c i. Then, aJ(xo) is also the first state of  cj, because this state 
must be such that 

d(Xo)= d(Xo)  - u d ( x ' )  
x'~X'(xo) 

• J ' E J ' J J J ' "  ver j " with a ( x )  q ,a (x ) :C:a (xo )anda . ( xo )~a (x ) , howe  a (Xo) is such that 
" r " ] i ° 

for any al(x ) E e] one has al(xo) C a (x ), 1.e. 

u d ( x ' )  -- 0 
x'~X'(x) 

On the other hand, if more than one element belongs to c) one has aJ(xo) C 
a](x'), i.e. 

d(x ' )  = d ( x ' )  - u d ( x " )  
x"~x"(x') 

and aJ(xo) C UaJ(x ') and kJ.aJ(x '') C aJ(x'), for any aJ(x ') E cj different from 
aY(xo). Therefore, sl(x ') ~ aJ(xo) = fl(Xo). Now, according to the hypothesis, 
the indicator p(cici [ Zo) must be such that its first state be equal to its last one, 
and thus p(cicilzo) must have only one state which is si(xo). Therefore, taking 
into account the above argument, only one element which is equal to the 
first and last s ta te  ofp(ciei l2o)  , belongs to  p(cic i ]Zo) , and thus p(cieilzo), 
is unique• 

in general, there is more than one indicator between two given particles. 
We will use the n o t a t i o n  P(cici) for the set to which all the indicators of  the 
states o f  cj with respect to the states of  ci belong, and the notation p(cic! I x) 
for the indicators belonging to P(cici) , i.e. P(eicj) =-- {p (e i c  j Iz) lz e z _c R}, 
where z is an index which distinguishes the elements of P(cicj). On the other 
hand, given a physical system S we use the notation PS(cici) for the set 
S n e(cicj). 

Definition 2. Given a physical system S and a particle ci C ~ ( B ) ,  an instant 
of  S with respect to ci is defined as the set  t(ci; S) ~ {p(cicLI zj)Ij  E J, 
provided that p(cicj I zj) E PS(cicj), and that the last state fl(xz) ofp(cicj j zj) 
be the same state of  ci for all j E J, and that to the intersection PS(cicj) C~ 
t(ci; S) there belong no more than one indicator for every j E J}.  

Definition 3. We define the set T(ci; S) containing all the t(ci; S) as the 
time-set of  S with respect to ci. 



TIME IN A SIMPLE MODEL OF A PHYSICAL SYSTEM 31 

Definition 4. An event ofe i  with respect to S is a set e(ci;S) = 
{p(c/eii zi) ]j E J, provided that p(clei]zt) ~ PS(cIei), and that the first state 
ofp(ejei Jzj) be the same state of  et' for a l J /E  J, and that to the intersection 
PS(ejei) 0 e(ei; S) there belong no more than one indicator for e v e r y / E  J ) .  

To support the distinction above introduced between instant and event let 
us make the following intuitive representation: an indicator p(e iej Ix) corre- 
ponds to a signal going from ej to ci. Then, an instant t(ei;S ) may be inter- 
preted as the set of  all the signals which are evolving particles belonging to S, 
and with a first and a last element, coming from the particles belonging to S 
and arriving at the same state of  ci. In the same way, an event e(ei; S) will be 
the set of  all the signals which are evolving particles belonging to S, and with 
a first and a last element, coming from the same state of  ei which reach the 
particles belonging to ,7. 

Theorem 2. Given S and ci C ~(B) ,  for all p E PS(ciek), where e~ E S, 
there is at least one instant t E T(ci; S) such that p E t: 

Proof Consider p(ciek ] zk) @ PS(eick), where ek E S. Because p(eiekl zk) 
is an indicator it follows that P(CiekIZk) is an evolving particle with a first and 
a last element, and hence with a first and a last state, which we denote by s 1 
and s2, respectively, On the other hand, there exists a state of  ci identical to 
s2. Therefore, p(ciek I zk) fulfils all the conditions for belonging to an instant 
of  T(ei; S), and thus there exists at least one t(ei;S ) such that 
p(eiek l zk) ~ t(ei; S). 

Theorem 3. t, t' E T(ei; S) and t 4: t '  ~ t ~ t '  and t' ~ t. 

Proof Let us suppose t C t', i.e. t ' -  t 4: ~, and let P(eiek[zk) E t' - t. 
From Definition 2 one has that all the last states of  each  p ( e i e j [ z j )  ~ t' are 
equal between them, and equal to a given state of  el, which we may call s2. 
Moreover, because t C t', all elements of  t also belong to t '  and thus fulfil the 
same above condition, i.e. the last state of  each indicator belongs t is s2. 
Therefore p(cicktZk ) E t, which contradicts p(e i ck l  Zk) E t'  -- t. 

Corollary 1. t, t'@ T(ci;S ) and t :/= t ' ~  t ('1 t '  C t and t c3 t '  C t'. 

Definition 5. A time-set T(ci; S) is degenerate iff for any t E T(ci; S) to 
which there belongs an indicator of  each non-empty PS(cick), 
where ck @ So C S one has that for all sets't's of  indicators defined such that 
an indicator of  each non-empty PS(cick), where ck @ So belongs to 7, then 
also belongs to T(ci; S). 

Theorem 4. Consider a physical system S and a particle ciC ~(B)  such 
that : (i) T(ei; S) is a degenerate time set; (ii) for all the c). E S one has that 
PS(eicj) is either finite with at least two elements, or denumerably infinite; 
(iii) at least one instant which belongs to T(ei; S) is a denumerably infinite set 
of  indicators. Then, the conditions (0, (it) and (iii) imply that there exists a 
set To(ci; S) C__ T(ei; S) such that each of  its elements is an infinite denumerable 
set of  indicators, and that the cardinal of  To(ci; S) is larger than the cardinal 
of  any PS(cick), where ck E S, namely, To(el; S) has the power of  the continum~ 
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Proof. From (iii) in Theorem 4, there exists at least one infinite denumer- 
able set t 1 of indicators such that t 1 @ T(ci; S). Let us write t 1 as {P(CiC] Ix), 
p(cickly) ,  p(eiczlz),  . •., p(cic] Iv), p(ciCtlW), . • .}. Because T(Ci; S) is a 
degenerate time-set we have that the instant t2 obtained from t 1 by making 

• • ~ P . p thesubst l tut lonofp(cic]lx)  t l b y p ( c i c l i x ) E P S ( c i c i ) w l t h x  v~x, also 
belongs to T(Ci; S). The existence ofp(cic] Ix') is guaranteed by the 
condition (ii) in the above theorem. By repeating the same procedure on 
t 2 and so on, one establishes the following one-to.one correspondence: 

1 ~ t 1 = {p(q c/Ix), P(ciek IY), p(cietlz) . . . .  , P(cics Iv), p(ciet I w) . . . .  } 

2 ~ t2 = {P(CiC] ix'), p(cictc iY), p(cicl[z) . . . .  , p(cies Iv), p(cict I w) . . . .  } 

3 ++ t 3 = {P(CiC]lX'), p(cickty') ,  P(Ci ct[ z) . . . . .  p(ciesl v), P(cict I w) . . . .  } 

m <+ tm= {P (ci ci Ix'), P(ei c1+ l Y'), P(Ci el I z') . . . .  , p(ci cs ] v'), P(Ci ct I w) . . . .  } 

Let A be the set of all the above instants, i.e. A - {ti t i E N}  where N is the 
set of natural numbers. Consider now the set To@i; S) to which belong all the 
elements of T(ci; S) which are denumerabty infinite sets of indicators. Then, 
by definition, one has To(ci; S) C T(ci; S) and also To(ci; S) 4= ~ because 
A 4 = ~b. In order to see thatA is a proper subset of To(ci;S) it is sufficient to 
recognize that t i E A =~ t i E To(ci; S) and that the set of indicators d -={Pl, P2, 
. . . .  Pm . . . .  } constructed following Cantor's diagonal method (i.e. the elements 
of d are such that p 1 @ P(CiCj I x), p 2 ¢ P(Ci Ck l Y) . . . . .  Pm =/= p(ci Ct f w)  . . . .  ) is 

such that d E To(ci;S ) and d q~A (see, e.g. Fraenkel, 1958). In the same way, 
it can be seen that any denumerably infinite set A of instants which are de- 
numerably infinite set of indicators is a proper subset of To(c/; S), i.e. 
A C To(ci; S). Then, To@i; S) is a non-denumerably infinite set. Moreover, 
because PS(ciCrn ) is either finite or denumerably infinite for all em E S, one has 
that the cardinal of  To(ci; S) is larger than the cardinal of PS(cicm) for all 
c m ~S .  

In order to see that To(ci; S) has the cardinal ,#'1 of the set of the real 
numbers, let To~ be the set To(ci; S) when all the PS(ciCm) contain only two 
indicators, and To~ be the s e t  To(ci; S)  when all the PS(ciCm) a r e  denumerably 
infinite sets. Thenwe have~AP(To~) ~< ~#(To(ci; S)) <~J/'(To~), where rig'(T) 
stands for the cardinal of the set T. On the other hand, the cardinal of Toa 
is dV" 1, because each element of Toa can be written in the form of a continuous 
fraction in binary system by assigning numbers 0 and 1 to the two indicators 
belonging t o  PS(ciera ), This establishes a one-to-one correspondence between 
the real numbers in the interval [0, I)  and the elements of To~. Moreover, the 
cardinal of To~ is .Afo Wo = ~4/~1, where ,A/" o stands for the cardinal of  a de- 
numerably infinite set. Therefore, .Aq ~< •r(To(ci; S)) <~ ~/'1, i.e. 
X(To(ci; S)) = W1. 

Let us now consider a time-set T(ei; S), an evolving particle c S E S, and the 
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set Z(cic]; S) such that Z(cic); S) C_ T(ci; S) and t 7 E Z(cici; S) implies that 
there does not exist a p ~ PS(cici) such that p E t~,. Then, we introduce the 

equivalence relation C (cici; S) defined on T(ci; S) - Z(cic]; S), according to 
which t~ C (cicj; S)tqj iff there exists a p ~ PS(cicj) such that p E t~ f3 t~. 

Definition 6. A clock of  a physical system S is a physical system formed by 
PS(cicj), where ci, c]E S, and c] is an evolving particle, and with the property 
represented by the operator fZ(cicj; S) such that: (i) ~2(cic]; S)by  acting on 
T(ci; S) produces a set T(ci cj; S) for which t~ E T(cic i ;S) ¢" te E W(cic j ;S), and 
W(cicj; S) =- (T(ci; S) - Z(cicj; S))/C (cicj; S) and (ii)' ~(cic]; S) is an ordered 
set such that for ts, te E T(cicj; S) one has t~ < t e iff sy(x) < sf(x'), where 
sy(x) and sf(x') are the first states of  p(cicilx ) and p(cicj]x'), respectively, 
and p(cic i Ix) Eta f-1 PS(cicj) and p(cicj ] x') Ete r~ PS(c i cj), with ta E t~ and 
te E t e , 

Concerning the condition (ii) of  the above definition, let us recall that if 
sf(x) and sf(x')  are the first states of  p(cicjlx ) and p(c ic]lx ' ) ,  respectively, 
then there exist two states o f  c i which are precisely these two states. Moreover, 
because c i is an evolving particle we must have either sy(x) < syOc') or sy(x') < 
sAx). 

Definition 7. Given a physical system S and two events e = e(Cm; S) and 
e' -~ e(cn; S) with Cm, Cn @ S, the time-set4nterval between these events with 
respect to a clock ~2(cici; S) is the subset T1 (cicj; S; ee') of  f2(cicj; S)T(ci; S), 
which has first and last element, let them be t~ and t c respectively, and there 
exist two indicators P(CiCm Ix) and P{CiCn ]y) such that p(CiCm Ix) E 
fettle(era;S) and p(cicnly) E t e f3 e(cn; S), where tct E t~ and te E te, and for 
all ta < t~ and te > te one has for every ta C ta and tf E te  that ta r3 e(Cm; S) = 
tfrq e(cn; S) = 0. Moreover, we define the time interval between e(Cm; S) and 
e(cn; S) with respect to the clock fZ(cicj; S) and to a given measure M, as the 
measure J r ' o f  the set T(cici; S; ee') - {re}. If  we use cardinality as a measure, 
the corresponding time interval will be given by the cardinality of  the set 
T(cici; S; ee') - (te}. 

According to the above definition, given a physical system S, two events 
e(crn ; S) and e(cn; S), where Cm, cn E S, and a clock ~2(cici; S), the time-set- 
interval between e(Cm; S) and e(cn;S) with respect to ~2(cici; S) might not 
exist, since a time-set-interval must have a first and a last element, which is 
not always the case for infinRe sets. However, all the finite time-set-intervals 
are trivial cases of  doubly-well-ordered sets, which not only have first and last 
elements but each subset o f  it has a first and a last element. It may also occur 
that for two events e(cm; S) and e(cn; S), the physical system S concerned be 
such that for one or two of  the events there does not exist a t~ E g2(cic/; S) x 
T(ci; S) for which there exists at least one ta E t~ fulfilling ta c~ e(ck; S) ~ ~, 
where k is equal to m or n. In such a case we will say that the events e(cm;S) 
and e(cn; S) are disconnected with respect to the clock associated with 
a(c~ci; S). 

Given a time-set T(ci; S), a clock associated with g2(cic]; S) and two events 
e(cm;S ) and e(cn; S), one may interpret the measurement o f  the time interval 
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between e(Cm ; S) and e(Cn; S) with respect to YZ(cici; S) and to the measure m 
(e.g. the cardinality), as an operation which first may erase some elements 
of  T(ci; S) yielding T(ci; S) - Z(cic]; S) and produces a partition o f  
T(ei; S) - Z(cic]; S), then orders the resulting quotient set, and finally counts 
the equivalence classes of  instants comprised between the two equivalence 
classes of  instants related in the way expressed in Definition 6 to e(c m ; S) 
and e(cn;S), respectively. Therefore, the measurement o f  time intervals 
depends in a nontrivial way on the clock with respect to which the time 
interval is defined and on the physical system considered. This provides a 
very flexible schema for the measurement of  time intervals. 

3. Concluding Remarks 

(i) We have developed here a relational theory o f  time, in the sense that 
the disappearance o f  the basic physical constituents of  our world would entail 
the disappearance of  time. But time and its relatives on the one hand, and 
particles on the other hand, are on the same footing since both are based on 
the base-set o f  all physical systems, which is formed only by pre-partictes. 

(ii) Though we have adopted a model of  the physical world with an infinite 
(although denumerable) number of  pre-particles, which yields a set o f  particles 
with the power of  the continuum, one can cover the case of  a physical world 
with a finite number of  particles by simply assuming that the base-set B of  
pre-particles is finite. In this case ~ (B)  and thus the set o f  all possible particles 
will be finite. On the other hand, ~ ( B )  becomes a finite set in which C is not 
connected, and thus can be represented by a graph. The same appfies to any 
particle. 
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